

Characterizing tissue equivalent materials a dual MRI-CT heterogeneous anthropomorphic phantom

A. Steinmann, R. Stafford, J. Yung, D. Followill IROC Houston QA Center

The University of Texas MD Anderson Cancer Center, Houston, TX USA

Purpose

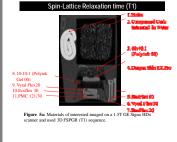
MRI guided radiotherapy (MRIgRT) is an emerging technology which directly translates to having a proficient auditing beam system for such devices. A patient whom is expected to receive therapy on a MRIgRT device will first obtain a CT, which will be used to perform a treatment plan. During treatment, on a MRIgRT device, real time images can be acquired on the MR unit for target localization. 1-2

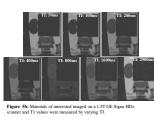
MR and CT acquire images very differently. CT measures electron density; whereas, the rate at which the proton, in the hydrogen nuclei, relaxes back to equilibrium is used to produce a MR signal.3-5 The main purpose of this study is to identify lung, soft tissue, and tumor mimicking substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times) which could further be used to manufacture a heterogeneous anthropomorphic End to End QA phantom.

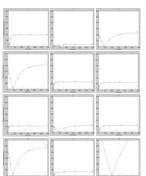
Common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR to test how visible they were on T1 and T2 weighted images. Average HU values were measured on both GE Lightspeed RT16 CT simulator and GE Discovery 750HD CT scanner. Materials with matching HU values of lung (-500 to -700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times.

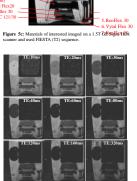
T1 was measured by applying a single slice inversion recovery spin echo sequence and varying inversion time (TI) by: 50, 100, 200, 400, 800, 1600, and 2900ms while the repetition time (TR) remain constant.6 T2 was measured by applying the 2D spin-echo sequence and varying the echo time (TE) by: 10, 20, 30, 40, 60, 80, 160, and 320 ms.6 Through Matlab, ROI were denoted and the average signal was measured in each material. The Levenberg-Marquardt least-squares algorithm was then applied to Eq. 1 and Eq. 2 (where M_0 represents the equilibrium magnetization, and S is the average signal) to measure T1 and T2, respectively.

$$S = M_0 \left(1 - 2e^{\frac{-TI}{T_1}} + e^{\frac{-TR}{T_1}} \right)$$

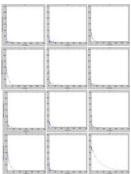

$$S = M_0 e^{\frac{-TE}{T_2}}$$

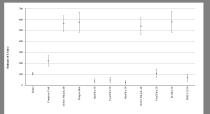

$$(Eq. 1)$$


$$(Eq. 2)$$


Motivation for this study

- •Due to different principles in which MR and CT acquire images, some materials are not visualized on
- ·Compress cork is typically used as lung-equivalent material in RPC thoracic anthropomorphic phantoms; however, as shown in Fig.1 and Fig. 2, in a T1-weighted image from a 1.5T GE Signa HDx Scanner, the 2.5 x 2.5 x 2.5cm3 compress cork cube is not visualized.
- ·Some materials that were imaged in both GE Discovery 750HD CT, and a 1.5T GE Signa HDx Scanners could only be visualized in CT and T1weighted images and were not observed in T2weighted images. (Fig. 3 & 4)





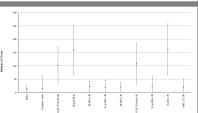

Spin-Spin Relaxation time (T2)

Figure 5d: Materials of interested imaged on a 1.5T GE Signa HD:

Parameters	T1 (1.5T)	T2 (1.5T)		Material	T1 (ms) 1.5T	T2 (ms) 1.5T	Averaç HU
Sequence	Single slice inversion recovery spin echo	2D Spin Echo		Bolus	104.2	14.29	-59.5
				Compress Cork	221.6	16.14	-646.7
				40:40:1 Polytek	561.8	102.4	-360
Matrix Size	128x128	128x128		Gel 00			
NEX	0.5	1		Dragon Skin Fx- Pro	575.0	159.4	199.5
				ReoFlex 30	37.1	22.45	-22.5
FOV (mm)	240.0	240.0	- 1	Vytal Flex 30	46.8	19.85	-13.5
TE (ms)	28.84	10, 20, 30, 40, 60, 80, 160, 320		ReoFlex 20	26.1	21.50	-19.5
				10:10:1 Polytek Gel 00	537.8	107.9	-680
TR (ms)	3000	1000		Vytal Flex 20	107.4	23.26	-18
TI (ms)	50, 100, 200, 400, 800, 1600, 2900	0		Ecoflex 00-30	578.4	162.4	182.5
				PMC 121/30	66.6	20.77	-11
				Water	1917	820.8	0

- Mini styrofoam balls combined with different concentrations of Polytek-00 [Ploytek10g of A, 10g of B and 1 g of styrofoam balls and Polytek 40g of A, 40g of B and 1 g of styrofoam balls can modify HU and change hydrogen content of each mixture; thus, varyi T1 and T2 relaxation times.
- Compressed cork saturated with water, Polytek-00 combined with mini styrofoam balls was examined for lung equivalent material.
- Bolus, SmoothOn's Dragon-Skin and Ecoflex could potentially be used for soft tissue and tumor equivalent material.

- 1. Mutic, S., & Demosey, J. F. (2014, July). The ViewRay System: Magnetic Resonance-Guided
- WB Samders.
 Z. Rasymders, B. W., Lagendijk, J. J. W., Overweg, J., Kok, J. G. M., Ranijmskers, A. J. E., Kerdadt, E. M., ... & Brown, K. M. (2009), Integrating a 1.5 T NaIN scanner with a 6 NN Stepper, A (2003), How does it work: Magnetic resonance imaging BML Brain Medical Journal, 23(47):28), 35.

 Al-McRobie, D. (2007), MMI from picture to proton (2nd ed.). Cambridge, UK: Camb
- University Peas.

 5. The Role of Imaging Radiotherapy Treatment Planning, (2001), In S. Stepigopoulos (Ed.), Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real Time Systems. Book Ration, E. (CRC Peas.

 6. Lim, T. Y., Stafford, R. J., Kudchaulker, R. J., Sankarmannyampillai, M., Bhou, G., Rao, A., again marked for possule broadyleneary. Physics in medicine and biology, 94(10), 2905.

Work supported by PHS grants CA180803 (NCI, DHHS).

Figure 1: Material of interested were first scann n a GE 1.5T Signa HDx Scanner. Some tested nachinable wax naraffin/telfon/ calcium were not visible on T1-weighted imag-

mootOn products: ReoFlex 30 & 20, Vytal Flex 30 & 20, PMC 121/30, Dragon Skin GE Discovery 750HD CT and HU were measured.